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ABSTRACT / ~ ~ '- 1 /

Reactive systems involving Arrhenius kinetics often exhibit multiple

steady states. A typical response is an S-curve, whose turnaround points

correspond to ignition or extinction. This paper describes the dynamics of

transition from the extinguished to the ignited state as the reaction-rate

parameter is slowly varied through the critical value. Both lumped and

spatially distributed models are studied. The asymptotic analysis is based

on the largeness of two parameters: one characterizing the activation

energy and the other the slow passage.
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SIGNIFICANCE AND EXPLANATION

Exothermic chemistry involving Arrhenius kinetics is of practical

importance in combustion as well as chemical enlineering. Arrhenius systems

often exhibit multiple steady states; a typical stationary response is an

S-curve. From such a steady response it is often argued that the system

would jump from a weakly reactive, almost extinguished state to one of

vigorous chemical activity as a control parameter (e.g. the Damkohler number)

is increased through a critical value. A similar jump from ignition to

extinction is implied as the control parameter is reduced through a different

critical value. Thus, inherently transient pictures are inferred from steady

solutions.

The purpose of this study is to provide an unsteady description of the

jump phenomena. Attention is focussed on situations where the variation of

the control parameter through criticality is gradual. Such variations might

correspond, in practice, to a slow deterioration in the activity of a

catalyst or to slow increase in pressure. The asymptotic analysis also makes

use of large activation energy.
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ARRHENIUS SYSTEMS: DYNAMICS OF JUMP DUE TO

SLOW PASSAGE THROUGH CRITICALITY

A. K. Kapila

1. INTRODUCTION

Reactive systems involving Arrhenius chemistry abound in several areas

of practical interest, ranging from chemical-reactor engineering to combus-

tion. Often, such systems exhibit multiple steady states. Tyically, the

equilibrium plot of a state variable y (e.g. the maximum temperature)

against a control variable 4, measuring the reaction rate, is an S-curve

(Figure 1). The lower branch of the S represents the low-conversion or

extinguished state while the upper branch corresponds to the high-conversion

or ignited state. In many cases both of these branches are asymptotically

stable while the middle branch is unstable, the exchange of stabilities

occuring precisely at the turnaround points of the S. The steady states

and their stability are discussed in great detail by Aris [1,2] in the con-

text of diffusion and reaction in permeable catalyst pellets. The forth-

coming monograph by Buckmaster and Ludford [3] will provide several relevant

examples from combustion.

This paper is concerned with the dynamic response of the system to slow

variations in . Such variations may be due, in practice, to changes in

pressure or in catalytic efficiency. Imagine, for example, that the system

is initially in equilibrium at an extinguished state, such as that corre-

sponding to point A in Figure 1. If is now increased gradually, it is

expected that the system will, more or less, follow the lower branch until

the critical point (i.e. the ignition point) C is reached. Then, a jump to

the ignited state will occur. The aim of this paper is to describe this
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transient process. A similar but simpler analysis, not presented here, de-

scribes the jump from the ignited to the extinguished state due to slow

passage through the extinction point E.

For lumped systems, governed by nonlinear ordinary differential equa-

tions of type dy/dt = F(y;f), the response due to slow variations in

has recently been examined by Haberman [4]. He looks, in particular, at a

neighborhood of the critical point C and shows that there exists a transi-

tion region which connects the near-equilibrium pre-critical solution (in

which p is slowly varying) to the jump solution (in which is stationary

at c). For those cases in which the S-curve is parabolic near C, Haberman

shows further that the aforementioned transition region is governed by a

Riccati equation whose solution explodes in a finite time. We shall extend

these notions to show that an entirely analogous situation exists for the dis-

tributed system, governed by a partial differential equation.

This paper complements earlier investigations by Kapila [5] and by Kassoy

and Poland [6,7] on the dynamics of ignition in distributed systems, and by

Kassoy 18] on similar problems in lumped systems. There the emphasis was on

evolution at fixed p, while the present work treats time-varying p. How-

ever, the earlier analyses are quite relevant here, as we shall see. Slow-

transition problems for partial differential equations have also been con-

sidered by Rubenfeld 19], but only for bifurcation points rather than junp

points. Buckmaster's treatment of slowly-varying flames [10] also falls in

the former category.

our analysis will be asymptotic, depending upon the largeness of two

parameters, one characterizing the slow variation of 0 and the other the

activation energy of the reaction. A lumped model is treated first; it employs

Haberman's idea in a slightly amplified form and lays the groundwork for the

subsequent analysis of a distributed model.
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2. A LUMPED MODEL

As an example of a lumpted system, consider the Continuously Stirred

Tank Reactor, CSTR, modelled by the equation [2]

y. = A 2(i+-y) exp(y-y/y) + l-y , (2.1)

where y is the temperature and T the time, while the positive parameters

2
A2,8 and y are, respectively, the Damkohler number, the heat of reaction

and the activation energy. It is convenient to define a reduced Damkohler

number 4 via the transformation

2 -
A = (e~y)-l) (2.2)

It is known [2] that for large enough y the equilibrium plot of y

against 4 has an S-shape (Figure 1), with the middle branch unstable and

the extreme branches asymptotically stable. A straightforward analysis of

the static problem (yT = 0 in (2.1)) in the limit y - further shows that

on the lower branch of the S the expansions

y + y - 1y + 0(y-2, - + 0(-i) (2.3)

hold, where the monotonically increasing function

= G(@I)' 0 < i < 1 (2.4)

is defined implicitly by

Yl= 4exp(y l- I ), 0 < Yl < 1 (2.5)

and is shown in Figure 2. The ignition point C corresponds to

= Yl = 1 at C

Also, for future use we note that

-3-
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1 /2 2 2 -

G( 1 - [2(- 1)]/2 + 2 (I-) + 0[(l- I) ] as -i 1 (2.6)

An analogous description of the upper branch yields

=1 + - est (2.7)

where est stands for terms that are exponentially small as y -Y , and the

point D on the upper branch is vertically above C.

Of interest is the dynamic behavior of y as 4 varies slowly through

4c .This slow variation can be characterized explicitly by introducing a
c

small parameter 6 and a slow time t, where

t =T, 6 <1

thereby transforming (2.1) into

i~i -1
6yt = (e~y) - (l+6-y) exp(y-y/y) + l-y (2.8)

At an initial time t = t < 0, let the state of the system correspond to
tA

point A in Figure 1, i.e. let

Y(tA) = yA ' 4(tA) = 4A
YtA YA A A

Then, the expansions (2.3) imply that

Y(tA + Y (y 2 ) (tA) = + 0(y 1  (2.9)
AA

Following (2.3) again, we let

4)(t) = 4(t) + 0(y - ) (2.10)

and assume that 4l(t) is a smooth, monotonically increasing function which

has the power series representation

4l(t) = 1 + t + 0(t 2) as t - 0 (2.11)

-4-



This specifies t = 0 to be the instant at which the ignition point is

reached; there is no loss of generality in setting 1(0) = 1. The goal is

to obtain an asymptotic solution to (2.8-2.9), with 1 (t) prescribed above,

in the limit 6 - 0, y - . Several different regimes need to be distinguished.

2.1 Pre-critical Solution

Anticipating that the solution stays close to unity until C is reached

(i.e. until t = 0), we substitute

y=1+ -1(t) (2.12)

into (2.8) and expand for y to get

zt= exp(z-l) - z + 0(y - ) (2.13)

where (2.10) has also been employed. Henceforth the analysis will concentrate

on the limit

-l
>> y1 (2.14)

The apparently richer limit 6 0(y- ) can also be treated, at the simple

expense of more algebra, but was found to yield no additional significant

effect.

We let z have the expansion

z = z + 6z + o(6) (2.15)

which, when fed into (2.13), gives

Zl = l exp(z1 -l) , (2.16)

z 2  =Zl/(Z -1) , (2.17)

-5-



where primes stand for differentiation with respect to t. Comparison of

(2.16) with (2.5) shows that z1  has the same form as the static solution

(2.4), i.e.

= G( 1 (t)) - (2.18)

The asymptotic expressions (2.6) and (2.11) then show that, as expected,

(2.18) is valid only for t < 0. In fact, we find that

= t + 0(-t) as t - 0 (2.19)

Once z is known, (2.17) determines z2 and we get the asymptotic behavior

z = (2t)- 1 + 1 (-2t)-1 /2 + 0(1) as t - 0- (2.20)
2 3

The above expression exhibits even more dramatically the breakdown of the

pre-critical expansion (2.15).

A word about the initial conditions (2.9) is in order. These imply that

z1(tA y 1 and z2(t A) = 0. While z1 , as given by (2.18), satisfies

A
this requirement, z2, as given by (2.17), does not, in general. This dis-

crepancy is easily remedied by means of a thin initial layer at t in which
A

the relevant time is the fast time T. In this layer, the effect of the

initial condition on z2 decays exponentially rapidly. In fact, even initial

conditions off the lower branch can be accomodated in this manner provided,

of course, that the initial point lies within the domain of attraction of the

(asymptotically stable) lower branch.

2.2 Transition Solution

Further development of the solution occurs on a new time scale s, de-

fined by the stretching

-6-
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t =-2 1/36 2/3s (2.21)

The new time is short on the t scale but is still long, 0(6-1/3), on the

T scale. Equations (2.11) and (2.13) transform into

1/3 2/3 (2.22
i 1 2 6 s + 0(64 3 ) (2.22)

and

-2-1 3 61 /3 z [1-2 1/3 2/3 s + 0(64/3) + 0(y )]exp(z-1) - z + 0(y - ) ,(2.23)

and the new expansion for z is taken to be

z + 6 s1/3Vl(s) + 62/3 v(s) + 0(6) (2.24)
12

It is clearly shown by (2.22) and (2.24) that the transition solution is re-

stricted to a small neighborhood of the critical point C. Substitution of

(2.24) into (2.23) yields the following Riccati equation for vl:

, = 21/3(22/3 s _ 1 2 S < (2.25a)
1 21

The condition

2/3 1/2 1
V 1  2 (s +- as s (2.25b)

comes from matching (2.24) with the pre-critical solution. The solution to

(2.25a,b) is (see [4])

v 1 = 22 / 3 Ai'(s)/Ai(s) ,(2.26)

where Ai is the Airy function. This solution is valid only for s > so?

where so = -2.3318 is the first zero of Ai(s), and there it has the

explosive behavior

2/ -l 1 +

Vl 2 2/3[(s-s0) + 1 s (s-s0)] as s s+ (2.27)
0 3 0 0

-7-
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This singularity immediately signals the breakdown of the transition solution

and suggests that the solution is attempting to deviate from criticality

farther than is allowed by the expansion (2.24). Before proceeding to the

next regime, however, it is desirable to compute v2  as well. The problem

for v2  is found to be

-21/3 (v 1 3 21/ 3 sv) S <

2 vv 2  6 v 1  1
(2.28)21/3 1 s-1/2)

v2  +- (2s +-- ) as s
2 3 2

whence IS
2 -2 r 3 . l

s

and it has the asymptotic behavior

v 3 (s-s )- 2n(s-s0) + A (s-s 2, as s s + (2.30)
2 3 0 0 0 00

The constant A0  is given by

=213 1-21 2  1 (x,3

tAi'(s 0 )1 [ fAi' (x)}{Ai(x)} dx

+ ({Ai'(x)l 3{Ai(x)} - I {Ai'(s )}2(x-s ) )dx

s0

+ {Ai'(s )} 2 n(-s + f Ai2Wx (2.31)
0 )

0

-i 8-__ _ _ _

|/



2.3 Post-Critical Solution

The manner in which (2.24) breaks down suggests the stretching

s = s o - 2-1/ 3 61 /3 (p-p ) (2.32)

where the new time scale p is of the same order as the fast time T, and

the shift pot assumed to be o(6-1/3), is to be determined. The expression

k2.22) reduces to

= 1 - 2 1/36 2/3s0 + 6(p-p 0 ) + 0(64/3

indicating that remains close to (but larger than) the critical value,

while (2.23) transforms into

z = [1 + 0(6 2/3)]exp(z-1) - z + 0(6) + 0(y
- I)

P

We note that the unsteady term z now appears to leading order. Allowingp

z to have the expansion

z = W (p) + o(i) (2.33)

w is found to satisfy

w= exp(wl-l) - wI  , p > -

/ielding the implicit solution

w1

f [exp(x-l) - x]- dx = P-P0 (2.34)
2

The integration constant p0  is to be determined. It can be shown that

2 4 A1wI  l--1-3P2 £n(-p) + 2as p - -

3p p

where

11-9-



S-I -2 2 -1
A,= n 2 - 4 - 2 , + 2 f-xp(x-l)-x} 2(x-1 + -(x-l) )dx (2.35)

3 0 13

Matching with the transition solution (2.24) yields

2

:- -- 1/3
10 9'

confirming the expectation that p0 = o(6 -/3) and

22/3A0 4
S =2 A + 4n 2
10 9

With A0  known from (2.31), substitution of the above expression into (2.35)

will determine p0.

At this stage it is convenient to revert to the original dependent

variable y. Substitution of (2.33) into (2.12) yields the expansion

-i -i)
y = 1 + W1 (P) + o(y) , (2.36)

indicating that so far y has stayed close to unity. However, larger depart-

ures from unity are imminent, because the solution (2.34) for w1  explodes

in a finite time. In fact, (2.34) shows that w I  increases monotonically

and has the behavior

WI = -Zn(p - p) + 1 + o(l) as p - p , (2.37)

where

P = P0 + f [exp(x-l) - x]l-dx (2.38)

2

2.4 Jump Solution

The singularity (2.37) implies that (2.36) is no longer valid, and that

further development of the solution takes place on the exponentially fast time

scalo -;, defined by the nonlinear stretching

-10-



p = p exp(-yo) , a > 0

On the o scale, (2.10) reduces to

= 1-21/3 62/3 s0 + 6 [p. - P - e- y] + 0(6 4/3) + 0(y-)

indicating that p undergoes only exponentially small variations from a

fixed value in a 62/ 3-neighborhood of criticality. Therefore Kassoy's super-

critical analysis [81, carried out for fixed , becomes relevant. We shall

not repeat the details here; suffice it to say that the solution has the

expansion

y = (10)
-  + 0(y -

and that y reaches the upper-branch value 1 + (cf. (2.7)) at o B/(I+B),

i.e. at

t = -21/ 362/3s0 + 6[p - P0 - exp{-y/(l+8) 11

We note that during this exponentially rapid ascent, the governinq parameter

is y; hardly any role is played by 6. However, once the upper branch has

been reached, further evolution of the solution, involving slow variation

about the upper-branch equilibrium, will be governed by a 6-expansion

analogous to (2.15).

, -1i-



3. A DISTRIBUTED MODEL

As an example of distributed systems, consider the porous catalyst

pellet, for unit Lewis number and in the symmetric slab geometry, governed by

the equations [i]

= Yxx + A 2(+B-y)exp(y-y/y), 0 < x < 1 , (3.1a)

y (0,T) = 0, y(l,T) = 1 , (3.1b)

with appropriate initial condition. The symbols have the same meanings as in

Section 2; the new independent variable x denotes the spatial coordinate.

It is again convenient to eliminate A in favor of 4 through the relation

2 -
A = (0y)-l (3.2)

The relevant static problem, which is a classic in the chemical engineer-

ing literature [1], was recently studied by Kapila and Matkowsky (see the

Appendix of (11]) in the limit y - . Schematically the response diagram,

now a plot of y at x = 0 against 4, is the same as in Figure 1, with the

same stability properties [2j. On the lower branch the expansions (2.3) still

prevail, leading to the problem

Yl + i exp yl = 0, y1 (0) = Y1 (0) 0 (3.3)
xx x

whose solution

y1 (x) = H(x;ol) (3.4)

can be represented parametrically by the equations

2 2
H = 2 n[cosh a sech(cx)], 0i = 2a sech a, 0 < a < a (3.5)

SC

(Schematically, Figure 2 also represents the graph of yl(0) against $i.)

The critical value a is given by
c

-12-



a tanh = 1 (az 1.2)

whence

0.88, yl (0) 1.187
c c

The analysis in (11] also shows that at the point D on the upper branch

(Figure 1),

YD(0) = 1+- -est (3.6)

In fact, yD (x) 1+0 -est throughout the domain, except for an exponentially

thin layer at x = 1.

We shall find that the similarity between the static behaviors of the

lumped and the distributed systems also extends to the dynamic responses due

to slow variation of . Before pursuing that question, however, we digress

for a brief look at the linear stability problem for the lower branch. This

problem can be shown to yield the following leading-order eigenvalue problem

in the limit y :

U" + (l exp y1)U - AU = 0, U'(0) = U(l) = 0 (3.7)

(Equation (3.7) can be derived most simply by reinstating the time-derivative

y in (3.3), linearizing about the steady state, and seeking solutions of
T

the type U(x) exp(AT).) Clearly, the eigenvalues A. and the corresponding

eigenfunctions U. (x of this Sturm-Liouville problem depend upon @i For

later use, we note two properties of (3.7). First, all Ai are negative

for i < l P as a consequence of the asymptotic stability of the lower
c

branch. In particular, therefore, A = 0 is not an eigenvalue for 'i <  1 "
c

Second, A = 0 is an eigenvalue at the critical point i = i because
c

that is where the exchange of stabilities occurs. The corresponding eigen-

function is given by

-13-



u (x) = 1-a x tanh (a x) (3.8a)20 c c

Incidently, another (linearly independent) solution of the differential equa-

tion in (3.7) is

1
Ul(x) = tanh (a x) (3.8b)

10 U cc

Turning now to the dynamic problem, we again employ the slow time

t = 6T, let y = y(x,t) and rewrite (3.1a,b) as

6Yt = Y + ( y)- 1 exp(y-y/y), 0 < x <1 (3.9a)

y (0,t) = y(l,t) 1 , (3.9b)

and again take the initial condition, at t tA < 0, to be that correspond-

ing to point A on the lower branch (Figure 1). The prescription (2.10) for

¢ still holds, but now we let

1 = [1 + t + 0(t 2)] as t - 0 (3.10)
c

The corresponding behavior of the parameter a, appearing in (3.5), is

c(t) a (-t) I / 2 - i t + 3 / 2 ] as t - 0- (3.11)
c 31

c

This result will be found useful in future computations.

As in the lumped example, the evolution of the solution is again followed

through several stages.

3.1 Pre-critical Solution

Expecting y to stay close to unity prior to criticality, we substitute

y i + y z(x,t) (3.12)

into (3.9a,b) to get

-14-



tzxx e  + 0y I, zx(0,t) z(l,t) 0 (3.13)

-1
For 6 >> , we assume the expansion

z = z + 6z2 + o(6) (3.14)

and thereby obtain, for zI , the problem

z1  + 1 exp zI = 0, z (0,t) = Z (l,t) = 0
xx x

Comparison with (3.3) yields the pseudo-steady solution

zI(x,t) = H(x;Ol(t)) . (3.15)

Application of the asymptotic expressions (3.10) and (3.11) into the definition

(3.5) of H then shows that

1 Z (x) - 2 (_t) /u 2 0 (x) + 0(t) as t _ 0 , (3.16)
c c

where

z (x) = 2 kn[cosh a sech(a x)] , (3.17)c c
c

and u 20(x) has already been introduced in (3.8a). The behavior (3.16),

analogous to the lumped result (2.19), demonstrates that (3.15) is not valid

beyond t = 0.

It is found that z2 satisfies

Z + ( I exp zl)z 2 = I z2 (0,t) = z2 (lt) = 0, t < 0 (3.18)

xx t x

This nonhomogeneous problem yields a unique z2 , as shown by the following

argument. The homogeneous problem corresponding to (3.18) is identical to

the eigenvalue problem (3.7) for A = 0 and for <  and therefore has
c

-15-
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only the trivial solution (see the remark about zero not being an eigenvalue

for <i < *l made following (3.7)). Hence z2  is unique, and has the
c

representation

x
z 2x,t) = alt)u 2 (x,t) + f [U1(Xt)u 2 (Et) -

0

U I ( ,t) u2 (x't) ] 1 ( ,t)dC (3.19)
it

Here,
1

a(t) = -[u2 (l,t)]
- f [U1 (l,t)u2 (E,t) - ul(Ct)u2 (lt)]zI ( ,t)d&

0 t

and the u.(x,t) satisfy the homogeneous differential equation1

u. + [0 (t) exp{z (xt)}]u. 0 (3.20a)
xx

and the initial conditions

u (0,t) = u 2 (Ot) = i; ul(Ot) = u 2 (0,t) = 0 (3.20b)
x x

(The remarks made at the end of Section 2.1 about satisfaction of initial

conditions by z1 and z2 apply here as well.) The asymptotic nature of

u1 and u2 is investigated in the Appendix and the results are

U (xt) = u 0(x) + (-t) u/2 U(x) + 0(t) , (3.21a)

1/2u2
U (xt) = u 20(X) + (-t) )u + 0(t), as t -0 (3.21b)

The functions u1 1  and u21 have been defined in the Appendix, while ul0,

u2 0 were introduced in (3.8a,b). With these expressions in hand, (3.19) can

be expanded for small t and the result is

z2(x,t) - (t)-lu20 +0(t-1/2]
2 2 W 0(x) + 0[(-t) 1 as t - 0 (3.22)3a2 20

c



which is analogous to (2.20). Thus, the pre-critical expansion (3.14) becomes

disordered in much the same way as its lumped counterpart (2.15) did, and we

are led to the transition solution.

3.2 Transition Solution

The transition time scale s is now defined by

t = -6 2/3b- s , (3.23)

where the 0(l) constant b will be chosen later, in a way that simplifies

algebra. When the above stretching, and the assumed transition expansion

z = zI (x) + 6 (1/3xV(,s) + 6 2/3v (x,s) + 6v (x,s) + O(6) , (3.24)
11 2 3

c

are fed into (3.13), the following equations for the v. emerge:

Vl1 + (1 exp z1 )v = 0 (3.25a)

xx c c
-2 1 2

v2 + exp z )v2  1bv exp z )(-b -s + 1 vI ) , (3.25b)

xx c c s c c

1 3 b-lsl
v3  + ( exp z )v - ( exp z )(vlv + v3 -bsv .(3.25c)

3 xp 1 )v 3 = 2 1 ep 1  1 2 611
xx c c S c c

Each v. is, of course, subject to the boundary conditions1

v. (0,s) = v.(l,s) = 0; i = 1,2,3 (3.26)
1 ix

The problem for v1  can be solved immediately to yield

v (x,s) = f (s)u 20(x) (3.27)

where the "amplitude function" f (s) is to be determined by requiring that

the nonhomogeneous equation (3.25b), subject to (3.26), have a solution. This

requirement leads to the orthogonality condition
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[-bfl (s)u20 (x) - exp zI (x) {-b- s + 1 f2 (u 2 (WI]u 20xdx
1c 201

which, upon the evaluation of aipropriate integrals, reduces to the differential

t qua t ion

bfl s) 3-1 3 2f2(
bf (s) 3b s _ - a f (s), s <

1 4 ci1

Tht2 condition

2 b-1/2s 1/2 b (s)-if--b s - 2 (s as s-*
1 3acc 3a2

c

is provided by the pre-critical solution upon matching. Thus, the familiar

Riccati problem emerges again (cf. (2.25a,b)). In fact, the choice

b = (9a2/4) 1/3

c

leads to the solution

2 -2/3
f (s) = 3(9a /4) Ai'(s)/Ai(s) (3.28)

1 c

thereby determining v1  completely, once (3.28) is substituted into (3.27).

It is now possible to write down the solution to (3.25b) and (3.26). The re-

sulting expression for v 2 will contain f2 (s)u 2 0 (x) as the complementary

function. By appealing to the solvability requirement on the v 3-equation,

(3.25c), and by matching with the pre-critical solution, we can show that f2

satisfies a differential problem (analogous to that in (2.28)) which can be

solved. The relevant calculations were made, because they are needed to

determine the leading-order solution at the next stage. However, although

straightforward, they are too cumbersome to report here.

As s approaches sot f explodes (see (2.27)), leading us to the
iu

next stage of solution development.

-18-
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3.3 Post-critical and Jump Solutions

Following the treatment of Section 2.3, the new time variable p is

defined by

s = s0 - b61/3 (p-p0

or equivalently by

t = -62/ 3b- 1s0 + 6(p-p )

where p0  is the yet unknown shift as before, and z is assumed to have the

expansion

z = W (X,p) + o(l) . (3.29)

Then, (3.13) provides the leading-order problem

W1 = W + exp w I, 0 < x < 1, p > - , (3.30a)
xx c

w (0,p) = w1 (1,P) = 0 , (3.30b)
x

for which the initial condition

WI = z (x)-x) + o( -  as p- (3.30c)
12 u20 +~ )a 4 -

c 3 p

comes from matching with two-terms of the transition expansion (3.24). In

order to determine the shift p0  and to fix the origin of p in the w1

problem (i.e. to fix the counterpart of the constant p0 appearing in (2.34)),

matching with three terms of (3.24) is needed, and this is where the knowledge

of v 2 (x,s) is required.

We now stress two aspects of w I. First, it evolves at a constant value

of i Second, it measures the departure of y from unity on the1

O(y - ) scale; this is shown by the asymptotic expression

j-19-



-l -1
y = 1 + y w1 (x,p) + o(y ) (3.31)

obtained by substituting (3.29) into (3.12). Therefore, w1 plays the same

role as the induction-period solution of the author's earlier paper [5], where

transition from an extinguished to the ignited state is studied at fixed 4;

also see [6]. In fact, as we shall see, the entire analysis of [5] applies

here, as did Kassoy's fixed analysis [8] in the lumped case.

Figure 3 shows the numerical solution of (3.30a,b,c), obtained by

using the package PDECOL [12]. This package employs B-splines for spatial

discretization, and then integrates the resulting ordinary differential equa-

tions with a Gear solver. Integration was begun at a large negative value

of p. We find that initially the solution develops slowly, but then w

begins to rise rapidly near x = 0 while variations continue to be leisurely

in the rest of the domain. Eventually, at a definite p = p., w (0,p)

becomes unbounded (compare with Figure 3 of [5]).

The explosive behavior of w1  in the thin boundary layer at x = 0

can be analyzed; this was done in [5] and a logarithmic singularity (cf. (2.37))

was revealed. This singularity marks the breakdown of (3.31), and further

development is exponentially fast, as it was in the lumped case. For full

details the reader is referred to [5]. Summarizing briefly, a rapidly shrink-

ing hot spot of growing intensity developed at x = 0. When y reaches the

valued 1 + 8 there, the hot spot detaches from the left boundary and moves

into the interior of the domain as a well-defined reaction wave, still travel-

ling exponentially fast and leaving behind a burnt zone at constant V = i+S.

Just before the right boundary is reached, the wave quickly comes to rest (on

the exponentially fast scale) to accomodate the boundary condition at x 1.

In other words, the jump to point D in Figure 1 is now complete (see (3.6)).

Further movement along the upper branch will again be governed by the slow

variable t, much in the manner of the pre-critical solution.

-20-



4. CONCLUDING REMARKS

The asymptotic analysis has concentrated on the behavior of the systems

as the parameter 0, a measure of the rate of reaction, passes slowly through

the ignition criticality. It is shown that the solution follows the lower

branch at the slow scale 6T (where T is the reference sca,e, i.e. the

residence time for lumped systems and diffusion time for distributed systems),

passes through criticality at the slightly faster scale 61/ 3 t, and goes

through the initial stage of the jump at the scale T. Most of the jump, how-

ever occurs at an exponentially fast scale (in y), and the subsequent travel

along the upper branch occurs again at the slow scale 6T. The similarities

between the responses of the lumped and distributed systems are clearly

demonstrated.

From a practical viewpoint, the ignition problem considered here is

probably of greater relevance in combustion, where increase of may be

associated with increase of pressure. On the other hand, in chemical

engineering the extinction problem might have more significance, where

decrease in could be the result of a decline in the efficiency of a catalyst.

A similar treatment would apply there, but the extinction jump would be much

less dramatic.
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APPENDIX

Here we are concerned with the solutions u.(x,t), i =1,2, of the eaua-

tion

u + F(x,t) = 0 (A. 1)
xx

subject to the initial conditions

u1(0,t) = 1, u 1(0,t) = 0; u 2(0,t) =0, u 2 (,t) =1. (A.2)
x x

The function F appearing in (A.1) is defined by

F(x,t) = 1%(t) exp[z 1(x~t)]

which, from (3.15) and (3.5), is seen to be

F(x,t) = 2a 2sech 2(atx) .(A.3)

Of particular interest is the behavior of u 1  and u 2  as t ~0. First,

we note that at t = 0, a = a so that F(x,0) = 2a 2sech 2(a x). Then, it is
c c c

easily checked that (A.1) and (A.2) have the solutions

u (x,0) = u (x) 1 tanh (a x)
1 10 a c

* c

U2 (x,0) = U 2 (x) =1 - a cx tanh (a cx)

* These functions have already appeared in (3.8a,b). Now, in view of the

asymptotic expression (3.11) for a, (A.3) gives

F(x,t) = 2a 2sech 2(a x)[11 - 2 (-t) 12u (x) + 0(t) as t -~ 0 , (A.4)
c c a 20

c

suggesting the expansions

1/2
U.(x,t) =U. 0 (x) + (-t) u 1 (x) + 0(t) as t o i =1,2 . (A.5)
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When (A.4) and (A.5) are substituted into (A.1) and (A.2), we find that the

u Wx satisfy

U. +2o 2sech 2(a x) u =4u u a sech 2(a x); i =1,2
il c c ii io 20c c

us (0) = u.()

leading to the solutions

x2

u Cx)W f 4ac u (o Mu 20 )sech 2(ax ) [i 10xWu 20) M U1u 20) (x)]d ; i 1,2

Upon evaluation of the appropriate integrals, we find that

u11( x) =12[tanh (a x) - a x sech 2(ax)]
a

c

2
u Wx x[tanh (ac x) +- a x sech (a x)]
21 c c c
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FIGURE CAPTIONS

Figure 1. The steady-state response

Figure 2. The lower branch

Figure 3. The numerically-computed plot of wl(X,p).
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